首页 | 本学科首页   官方微博 | 高级检索  
     


Platinum sonoelectrodeposition on glassy carbon and gas diffusion layer electrodes
Authors:Bruno G. Pollet  Emmanuel F. ValzerOliver J. Curnick
Affiliation:PEM Fuel Cell Research Group, Centre for Hydrogen and Fuel Cell Research, The University of Birmingham, Edgbaston Road, Birmingham B15 2TT, UK
Abstract:The electrodeposition of Pt on glassy carbon (GC) and gas diffusion layer (GDL) surfaces in dilute chloroplatinic acid solutions (10 mM PtCl42− in 0.5 M NaCl) was performed potentiodynamically in the absence and presence of ultrasound (20 kHz) at various ultrasonic powers (up to 6 W) respectively and at (313 ± 2) K. In our conditions, it was found that platinum electrodeposition is an irreversible process which requires a substantial overpotential to drive the formation of Pt nuclei on the GC and GDL surfaces; however, under sonication Pt electrodeposition becomes more facile due to lower concentration and nucleation overpotentials and overall currents are significantly increased compared to silent conditions. It was also observed that the specific electrochemical surface area (SECSA) was significantly affected for Pt/GC and Pt/GDL electrodes prepared in the presence of rotation (GC only) and under sonication compared to those prepared under silent conditions. This finding was explained to be due to both larger and agglomerated platinum nanoparticles formed on the GC and GDL surface caused by forced convection. It was also found that ultrasound produced larger Pt nanoparticles on GC electrodes than those on GDL electrodes.
Keywords:Platinum electrodeposition   Fuel cells   GC   GDL   Power ultrasound   Sonoelectrochemistry
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号