首页 | 本学科首页   官方微博 | 高级检索  
     


Deep learning-based symbol detection algorithm in IMDD-OOFDM system
Authors:Zhang Huibin  Li Tianzhu  Liu Haojiang  Li Zhuotong
Affiliation:Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract:
In the current research on intensity-modulation and direct-detection optical orthogonal frequency division multiplexing ( IMDD-OOFDM ) system, effective channel compensation is a key factor to improve system performance. In order to improve the efficiency of channel compensation, a deep learning-based symbol detection algorithm is proposed in this paper for IMDD-OOFDM system. Firstly, a high-speed data streams symbol synchronization algorithm based on a training sequence is used to ensure accurate symbol synchronization. Then the traditional channel estimation and channel compensation are replaced by an echo state network (ESN) to restore the transmitted signal. Finally, we collect the data from the system experiment and calculate the signal-to-noise ratio (SNR). The analysis of the SNR optimized by the ESN proves that the ESN-based symbol detection algorithm is effective in compensating nonlinear distortion.
Keywords:
点击此处可从《中国邮电高校学报(英文版)》浏览原始摘要信息
点击此处可从《中国邮电高校学报(英文版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号