首页 | 本学科首页   官方微博 | 高级检索  
     

融合代码静态特征和频谱的软件缺陷定位技术
作者姓名:王浩仁  岳雷  李静雯  崔展齐
作者单位:北京信息科技大学计算机学院
基金项目:国家自然科学基金资助项目(61702041);;北京市教委科技计划资助项目(KM201811232016);
摘    要:基于频谱的缺陷定位(spectrum-based fault localization, SBFL)通过分析测试用例的覆盖信息和执行结果信息进行快速定位,是目前最常用的缺陷定位技术。然而,该方法未能充分利用代码中隐含的语义和结构信息。若能将缺陷预测中使用到的代码结构信息和频谱信息融合使用,将有助于进一步提升缺陷定位的效果。为此,提出了一种融合代码静态特征和频谱的软件缺陷定位(fault localization combing static features and spectrums, FLFS)技术。首先,从Halstead等度量元集合中选取度量元指标并进行修改,以适用于度量代码的方法级特征;然后,根据选取的度量元指标提取程序中各个方法的静态特征并用于训练缺陷预测模型;最后,使用缺陷预测模型预测程序中各方法存在缺陷的预测可疑度,并与SBFL技术计算的频谱可疑度进行融合,以定位缺陷所在方法。为验证FLFS的有效性,将其与两种定位效果最好的SBFL技术DStar和Ochiai在Defects4J数据集上进行了对比实验。结果表明,FLFS具有更好的缺陷定位性能,对于Einspe...

关 键 词:缺陷定位  缺陷预测  程序频谱  代码结构信息  可疑度
收稿时间:2023-02-20
修稿时间:2023-08-15
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号