基于深度学习的铝合金轮毂铸件图像缺陷检测 |
| |
作者姓名: | 闫学顺 汪东红 吴文云 姜淼 邱慧慧 龚潜海 疏达 |
| |
作者单位: | 1. 上海工程技术大学材料科学与工程学院;2. 上海交通大学材料科学与工程学院;3. 嘉善鑫海精密铸件有限公司;5. 浙江佳力风能技术有限公司 |
| |
基金项目: | 国家重点研发计划资助项目(2020YFB1710101,2022YFB3706800);;国家科技重大专项资助项目(J2019-Ⅵ-0004-0117);;国家自然科学基金资助项目(51821001,52074183,52090042);;浙江省重点研发计划资助项目(2020C01056,2021C01157,2022C01147);;长寿命高温材料国家重点实验室开放基金资助项目(DECSKL202109); |
| |
摘 要: | 基于传统X射线图像的铝合金轮毂铸件缺陷检测方法存在人工检测效率低、误检率高、检测精度较差等问题,提出一种基于深度学习的铝合金轮毂铸件图像缺陷检测方法。通过引入直方图均衡化方法,实现533组铝合金铸件X射线图像缺陷特征增强;同时基于Mosaic数据增广策略随机生成含有多尺度不同缺陷类型的新图像数据,提升图像的复杂度;修改了YOLOv5主干网络,引入SENet注意力机制模块对输入特征图的重要通道进行特征提取增强。结果表明,该方法对铸件缺陷平均检测精度(mAP)达到了99.6%,对比YOLOv3、YOLOv4以及YOLOv5主流算法,平均检测精度分别提升了9%、5.1%、4.2%。相较于原网络模型,常见的4种类型(气孔、缩松、裂纹、夹杂)铸件缺陷平均检测精度提升了10.83%。该方法具有更好的泛化能力,可实现铸件多类型缺陷的自动检测,能够满足工业实际需求。
|
关 键 词: | 铝合金铸件 缺陷检测 深度学习 X射线图像 注意力机制 |
|