首页 | 本学科首页   官方微博 | 高级检索  
     

基于支持向量机的径向基网络结构优化
引用本文:饶泓,虞国全,胡倩如. 基于支持向量机的径向基网络结构优化[J]. 计算机工程与应用, 2008, 44(5): 67-69. DOI: 10.3778/j.issn.1002-8331.2008.05.021
作者姓名:饶泓  虞国全  胡倩如
作者单位:南昌大学,计算中心,南昌,330031;南昌大学,计算中心,南昌,330031;南昌大学,计算中心,南昌,330031
基金项目:江西省科技公关计划 , 江西省科技支撑计划
摘    要:为了解决径向基网络(RBF NN)结构设计的随机性,进一步优化RBF网络性能,提出一种基于支持向量机(SVM)的径向基网络结构优化方法。通过训练得到的SVM确定径向基网络的隐层节点个数、隐层权值和阈值;同时利用SVM对输入向量进行特征变换,进一步对输入向量进行维数约简。通过齿轮箱的故障诊断实验表明,优化后的RBF网络具有更精简、稳定的网络结构,能得到更准确的诊断结果。

关 键 词:支持向量机  径向基网络  特征变换  故障诊断
文章编号:1002-8331(2008)05-0067-03
收稿时间:2007-06-05
修稿时间:2007-09-06

RBF Neural Network structure optimization method based on SVM
RAO Hong,YU Guo-quan,Hu Qian-ru. RBF Neural Network structure optimization method based on SVM[J]. Computer Engineering and Applications, 2008, 44(5): 67-69. DOI: 10.3778/j.issn.1002-8331.2008.05.021
Authors:RAO Hong  YU Guo-quan  Hu Qian-ru
Affiliation:Center of Computer,Nanchang University,Nanchang 330031,China
Abstract:An approach of Radial Basis Function Neural Network(RBF NN) optimization based on support vector machine was proposed to solve the randomness of the network structure and the unstableness of the network’s performance.The number of the hidden neurons,the value of the weight and bias in RBF neural network are determined by the trained SVM.The approach is adopted in modeling and diagnosing the fault of gear case.In the experiment,the input vectors are transformed with the SVM character extraction approach firstly and then trained with the optimized RBF.Experimental results indicate that the optimized RBF network can obtain stable performance and more accurate diagnosis.
Keywords:Support Vector Machine  Radial Basis Function Neural Network  character transform  machinery fault diagnosis
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号