摘 要: | 目的 机器视觉图像处理技术是近年在图像处理领域发展起来的一门新兴边缘交叉学科,二维图像的质量检测是印刷行业中必不可少的环节,分析基于机器视觉的二维图像质量缺陷检测流程,探索影响基于机器视觉的二维图像质量缺陷检测精度的相关因素,为后续研究印刷品的二维图像自动化检测和质量控制提供参考。方法 在此基础上,围绕图像预处理中的灰度转换、噪声过滤、固定阈值分割、自适应阈值分割、Otsu法及边缘检测,对图像配准中的基于灰度统计信息分布配准方法、基于特征的图像配准方法进行总结,然后归纳分析图像的缺陷提取和分类。结论 以实际例子对上述研究内容进行了提炼,通过图像预处理中的噪声过滤为后续缺陷提取提供清晰图像,减少伪影干扰;通过图像预处理中的灰度变换、阈值分割、感兴趣区域提取减少系统处理时间,为实现高效的缺陷检测奠定了坚实的基础;通过图像配准消除了机械振动引起的图像位置偏移,确保后续缺陷提取的准确性;通过图像缺陷提取和分类帮助印刷企业找出生产问题,提供有针对性的改进措施,可为生产高质量产品提供支持。
|