首页 | 本学科首页   官方微博 | 高级检索  
     


Novel Sonar Salient Feature Structure for Extended Kalman Filter-Based Simultaneous Localization and Mapping of Mobile Robots
Abstract:
Abstract

Not all line or point features capable of being extracted by sonar sensors from a cluttered home environment are useful for simultaneous localization and mapping (SLAM) of a mobile robot. This is due to unfavorable conditions such as environmental ambiguity and sonar measurement uncertainty. We present a novel sonar feature structure suitable for a cluttered environment and the extended Kalman filter (EKF)-based SLAM scheme. The key concept is to extract circle feature clouds on salient convex objects by sonar data association called convex saliency circling. The centroid of each circle cloud, called a sonar salient feature, is used as a natural landmark for EKF-based SLAM. By investigating the environmental inherent feature locality, cylindrical objects are augmented conveniently at the weak SLAM-able area as a natural supplementary saliency to achieve consistent SLAM performance. Experimental results demonstrate the validity and robustness of the proposed sonar salient feature structure for EKF-based SLAM.
Keywords:Sonars  feature maps  simultaneous localization and mapping  home navigation  wheeled robots
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号