首页 | 本学科首页   官方微博 | 高级检索  
     

基于梯度图的快速POCS超分辨率复原算法研究
引用本文:陈健,王伟国,刘廷霞,李博,姜润强,高慧斌. 基于梯度图的快速POCS超分辨率复原算法研究[J]. 仪器仪表学报, 2015, 36(2): 327-338
作者姓名:陈健  王伟国  刘廷霞  李博  姜润强  高慧斌
作者单位:中国科学院长春光学精密机械与物理研究所;中国科学院大学;吉林大学通信工程学院
基金项目:吉林省长科技合(2013270)基金资助
摘    要:随着红外成像相关产业的兴起,红外成像技术具有的隐蔽性好、探测范围广、定位精度高、穿透距离远,以及轻质小巧、低耗可靠等优点备受青睐,已成为当前智能化光电探测发展的主流方向。然而,红外弱小目标的图像细节特征少、信噪比低等特点成为红外图像应用的瓶颈,如何提高红外弱小目标成像效果成为目前的研究热点。POCS算法是目前超分辨率复原中应用非常广泛的一种复原算法,但是该算法运算量大,处理时间较长,同时对图像的边缘细节保留能力较差。针对POCS超分辨率复原算法迭代时间较长,无法满足光电探测系统实时性的问题,提出了基于梯度图的快速POCS超分辨率复原算法(GPOCS)。该算法根据图像的梯度分布对图像中的像素点进行分类,采用不同的迭代系数进行计算。改进算法能够较好的保留边缘信息并抑制噪声,进而在保证超分辨率复原性能的基础上大大缩短了运算时间。实验结果表明:GPOCS算法复原结果在背景处噪声得到一定的抑制,整体复原能力优于传统的POCS复原方法。该算法能够有效地保留边缘细节,同时处理时间小于传统的POCS复原方法,减少了1个数量级已经是接近实时。GPOCS算法能够自适应的选取迭代步长,较好的保留边缘信息并抑制噪声,进而在保证超分辨率复原性能的基础上大大缩短了运算时间,虽然不能满足实时性的要求,但是也已经是接近实时。

关 键 词:超分辨率复原  凸集投影约束  红外弱小目标  梯度图

Research on fast POCS super-resolution restoration algortihmbased on gradient image
Chen Jian,Wang Weiguo,Liu Tingxi,Li Bo,Jiang Runqiang,Gao Huibin. Research on fast POCS super-resolution restoration algortihmbased on gradient image[J]. Chinese Journal of Scientific Instrument, 2015, 36(2): 327-338
Authors:Chen Jian  Wang Weiguo  Liu Tingxi  Li Bo  Jiang Runqiang  Gao Huibin
Affiliation:Chen Jian;Wang Weiguo;Liu Tingxia;Li Bo;Jiang Runqiang;Gao Huibin;Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences;University of Chinese Academy of Sciences;College of Communication Engineering,Jilin University;
Abstract:With the spring up of the infrared imaging related industry, the infrared imaging technology has become the mainstream development direction of the intelligent photoelectrical detection due to its good concealment, wide detection range, high positioning accuracy, long penetration distance, light weight, little volume, low power dissipation and high solidity. However, the features of the image of infrared dim-small target, such as less details and low SNR, become the bottleneck of the application of infrared image. How to enhance the imaging effect of the infrared dim-small target becomes the hotspot of the research. POCS algorithm is currently one of the widely used super resolution restoration algorithm. However, this algorithm requires large amount of computation and takes a long processing time. Also, the retention capacity of the details on the edge of the image is poor. Aiming at the long iteration time of the POCS super-resolution restoration algorithm that cannot meet the real time detecting requirement of optical detection system, a fast POCS super resolution restoration algorithm based on gradient image (GPOCS) is proposed, which classifies the image pixels according to the gradient distribution of the image, and then uses different iteration factors for calculation. The iteration step is larger when the gradient is larger and the iteration step is smaller when the gradient is smaller. The improved algorithm can preserve edge information and suppress noise. Therefore, it can guarantee the performance of the super-resolution restoration and greatly reduce the operation time. Experiment results show that GPOCS algorithm results in certain noise suppression at background. Its overall restoration capability is superior to that of traditional POCS method. This algorithm could effectively retain the edge details, and the processing time is less than that of traditional POCS restoration method; and the one order of magnitude reduction is already close to real time performance. The GPOCS algorithm could adaptively select the step size. GPOCS algorithm could better retain edge information and suppress noise. Furthermore, the GPOCS algorithm could guarantee the super-resolution restoration performance, while greatly reducing the processing time. Although GPOCS algorithm could not meet real time requirement, its performance is already close to real time.
Keywords:super-resolution restoration   POCS   infrared dim-small target   Gradient image
本文献已被 CNKI 等数据库收录!
点击此处可从《仪器仪表学报》浏览原始摘要信息
点击此处可从《仪器仪表学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号