首页 | 本学科首页   官方微博 | 高级检索  
     


A Genetic Algorithm for Multiobjective Robust Design
Authors:B Forouraghi
Affiliation:(1) Computer Science Department, Saint Joseph's University, 5600 City Ave., Philadelphia, PA, 19131
Abstract:The goal of robust design is to develop stable products that exhibit minimum sensitivity to uncontrollable variations. The main drawback of many quality engineering approaches, including Taguchi's ideology, is that they cannot efficiently handle presence of several often conflicting objectives and constraints that occur in various design environments.Classical vector optimization and multiobjective genetic algorithms offer numerous techniques for simultaneous optimization of multiple responses, but they have not addressed the central quality control activities of tolerance design and parameter optimization. Due to their ability to search populations of candidate designs in parallel without assumptions of continuity, unimodality or convexity of underlying objectives, genetic algorithms are an especially viable tool for off-line quality control.In this paper we introduce a new methodology which integrates key concepts from diverse fields of robust design, multiobjective optimization and genetic algorithms. The genetic algorithm developed in this work applies natural genetic operators of reproduction, crossover and mutation to evolve populations of hyper-rectangular design regions while simultaneously reducing the sensitivity of the generated designs to uncontrollable variations. The improvement in quality of successive generations of designs is achieved by conducting orthogonal array experiments as to increase the average signal-to-noise ratio of a pool of candidate designs from one generation to the next.
Keywords:genetic algorithms  noninferior  robust design  Taguchi method  S/N ratio
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号