首页 | 本学科首页   官方微博 | 高级检索  
     


Theoretical investigation of atomic structure and electronic properties of Ca/Si(110)-(2 × 1) reconstruction
Authors:AZ AlZahrani
Affiliation:
  • Physics Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
  • Abstract:We have presented first-principles total-energy calculations for the adsorption of Ca metals onto a Si(110) surface. The density functional method was employed within its local density approximation to study the atomic and electronic properties of the Ca/Si(110) structure. We considered the (1 × 1) and (2 × 1) structural models for Ca coverages of 0.5 monolayer (ML) and 0.25 ML, respectively. Our total-energy calculations indicate that the (1 × 1) phase is not expected to occur. It was found that Ca adatoms are adsorbed on top of the surface and form a bridge with the uppermost Si atoms. The Ca/Si(110)-(2 × 1) produces a semiconducting surface band structure with a direct band gap that is slightly smaller than that of the clean surface. One filled and two empty surface states were observed in the gap; these empty surface states originate from the uppermost Si dangling bond states and the Ca 4 s states. It is found that the Ca-Si bonds have an ionic nature and complete charge being transferred from Ca to the surface Si atoms. Finally, the key structural parameters of the equilibrium geometry are detailed and compared with the available results for metal-adsorbed Si(110) surface, Ca/Si(001), and Ca/Si(111) structures.
    Keywords:Si(110) surface  Alkaline-earth metals  Ca adsorption  Density functional theory  Local density approximation  Ionic bonds  Surface states  Charge density
    本文献已被 ScienceDirect 等数据库收录!
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号