首页 | 本学科首页   官方微博 | 高级检索  
     


Mobility of Pb in salt marshes recorded by total content and stable isotopic signature
Authors:Caetano Miguel  Fonseca Nuno  Cesário Carlos Vale Rute
Affiliation:National Institute for Agronomy and Fisheries Research -- IPIMAR, Av. Brasília 1449-006, Lisbon, Portugal.
Abstract:Total lead and its stable isotopes were analysed in sediment cores, leaves, stem and roots of Sacorconia fruticosa and Spartina maritima sampled from Tagus (contaminated site) and Guadiana (low anthropogenic pressure) salt marshes. Lead concentration in vegetated sediments from the Tagus marsh largely exceeded the levels in non-vegetated sediments. Depth profiles of (206)Pb/(207)Pb and (206)Pb/(208)Pb showed a decrease towards the surface ((206)Pb/(207)Pb=1.160-1.167) as a result of a higher proportion of pollutant Pb components. In contrast, sediments from Guadiana marsh exhibited low Pb concentrations and an uniform isotopic signature ((206)Pb/(207)Pb=1.172+/-0.003) with depth. This suggests a homogeneous mixing of mine-derived particles and pre-industrial sediments with minor inputs of anthropogenic Pb. Lead concentrations in roots of plants from the two marshes were higher than in leaves and stems, indicating limited transfer of Pb to aerial parts. A similar Pb isotopic signature was found in roots and in vegetated sediments, indicating that Pb uptake by plants reflects the input in sediments as determined by a significant anthropogenic contribution of Pb at Tagus and by mineralogical Pb phases at Guadiana. The accumulation in roots from Tagus marsh (max. 2870 microg g(-1) in S. fruticosa and max. 1755 microg g(-1) in S. maritima) clearly points to the dominant role of belowground biomass in the cycling of anthropogenic Pb. The fraction of anthropogenic Pb in belowground biomass was estimated based on the signature of anthropogenic Pb components in sediments ((206)Pb/(207)Pb=1.154). Since no differences exist between Pb signature in roots and upper sediments, the background and anthropogenic levels of Pb in roots were estimated. Interestingly, both background and anthropogenic Pb in roots exhibited a maximum at the same depth, although the proportion of anthropogenic Pb was relatively constant with depth (83+/-4% for S. fruticosa and 74+/-8% for S. maritima).
Keywords:Lead  Stable lead isotopes  Salt marsh  Roots
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号