首页 | 本学科首页   官方微博 | 高级检索  
     

基于注意力机制的LSTM语音情感主要特征选择
作者姓名:胡婷婷  冯亚琴  沈凌洁  王蔚
作者单位:南京师范大学教育科学学院机器学习与认知实验室
基金项目:中国国家社会科学基金会项目(BCA150054)
摘    要:传统的语音情感识别方式采用的语音特征具有数据量大且无关特征多的特点,因此选择出与情感相关的语音特征具有重要意义。通过提出将注意力机制结合长短时记忆网络(Long Short Term Memory, LSTM),根据注意力权重进行特征选择,在两个数据集上进行了实验。结果发现:(1)基于注意力机制的LSTM相比于单独的LSTM模型,识别率提高了5.4%,可见此算法有效提高了模型的识别效果;(2)注意力机制是一种有效的特征选择方法。采用注意力机制选择出了具有实际物理意义的声学特征子集,此特征集相比于原有公用特征集在降低了维数的情况下,提高了识别准确率;(3)根据选择结果对声学特征进行分析,发现有声片段长度特征、无声片段长度特征、梅尔倒谱系数(Mel-Frequency Cepstral Coefficient, MFCC)、F0基频等特征与情感识别具有较大相关性。

关 键 词:特征选择  语音情感识别  深度学习  注意力机制
收稿时间:2018-08-09
修稿时间:2018-09-03
本文献已被 CNKI 等数据库收录!
点击此处可从《声学技术》浏览原始摘要信息
点击此处可从《声学技术》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号