首页 | 本学科首页   官方微博 | 高级检索  
     


Load balancing algorithms based on gradient methods and their analysis through algebraic graph theory
Authors:Andrey G. Bronevich  Wolfgang Meyer
Affiliation:1. Taganrog State University of Radio-Engineering, Nekrasovskij street 44, 347928 Taganrog, Russia;2. Institut für Automatisierungstechnik (2-05), Schwarzenbergstrasse 95, D-21073 Hamburg, Germany
Abstract:
The main results of this paper are based on the idea that most load balancing algorithms can be described in the framework of optimization theory. It enables to involve classical results linked with convergence, its speed and other elements. We emphasize that these classical results have been found independently and till now this connection has not been shown clearly. In this paper, we analyze the load balancing algorithm based on the steepest descent algorithm. The analysis shows that the speed of convergence is determined by eigenvalues of the Laplacian for the graph of a given load balancing system. This consideration also leads to the problems of choosing an optimal structure for a load balancing system. We prove that these optimal graphs have special Laplacians: the multiplicities of their minimal and maximal positive eigenvalues must be greater than one. Such a property is essential for strongly regular graphs, investigated in algebraic graph theory.
Keywords:Load balancing algorithms   Gradient methods   Algebraic graph theory   Laplacian
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号