首页 | 本学科首页   官方微博 | 高级检索  
     


Clustering of the self-organizing map
Authors:Vesanto   J. Alhoniemi   E.
Affiliation:Neural Networks Res. Centre, Helsinki Univ. of Technol., Espoo.
Abstract:
The self-organizing map (SOM) is an excellent tool in exploratory phase of data mining. It projects input space on prototypes of a low-dimensional regular grid that can be effectively utilized to visualize and explore properties of the data. When the number of SOM units is large, to facilitate quantitative analysis of the map and the data, similar units need to be grouped, i.e., clustered. In this paper, different approaches to clustering of the SOM are considered. In particular, the use of hierarchical agglomerative clustering and partitive clustering using K-means are investigated. The two-stage procedure-first using SOM to produce the prototypes that are then clustered in the second stage-is found to perform well when compared with direct clustering of the data and to reduce the computation time.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号