首页 | 本学科首页   官方微博 | 高级检索  
     

基于群能量恒定的粒子群优化算法
引用本文:王建林,薛尧予,于涛,马江宁. 基于群能量恒定的粒子群优化算法[J]. 控制与决策, 2010, 0(2)
作者姓名:王建林  薛尧予  于涛  马江宁
作者单位:北京化工大学信息科学与技术学院,北京100029;
基金项目:国家自然科学基金项目(20476007,20676013)
摘    要:针对标准粒子群优化(PSO)算法在寻优过程中容易出现早熟的情况,提出一种群能量恒定的粒子群优化(SEC-PSO)算法.算法根据粒子内能进行动态分群,对较优群体采取引入最差粒子的速度更新策略,对较差群体采取带有惩罚机制的速度更新策略,由其分担由于较优群体速度降低而产生的整群能量损失,从而有效地避免了PSO算法的早熟.典型优化问题的仿真结果表明,该算法具有较强的全局搜索能力和较快的收敛速度,优化性能得到显著的提高.

关 键 词:粒子群优化算法  群体智能  能量恒定  

Particle swarm optimization based on swarm energy conservation
WANG Jian-lin,XUE Yao-yu,YU Tao,MA Jiang-ning. Particle swarm optimization based on swarm energy conservation[J]. Control and Decision, 2010, 0(2)
Authors:WANG Jian-lin  XUE Yao-yu  YU Tao  MA Jiang-ning
Affiliation:College of Information Science and Technology/a>;Beijing University of Chemical Technology/a>;Beijing 100029/a>;China.
Abstract:To the problem of premature convergence frequently appeared in standard particle swarm optimization(PSO) algorithm,an improved algorithm,swarm energy conservation particle swarm optimization (SEC-PSO),is proposed. The population is partitioned into two sub-swarms according to the energy of the particles. The good particles update their velocity according to the strategy with the worst particle. The bad particles update their velocity according to the strategy with penalty mechanism,and bear the swarm energy...
Keywords:Particle swarm optimization algorithm  Swarm intelligence  Energy conservation  
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号