首页 | 本学科首页   官方微博 | 高级检索  
     


Robust cluster validity indexes
Authors:Kuo-Lung Wu [Author Vitae]  Miin-Shen Yang [Author Vitae] [Author Vitae]
Affiliation:a Department of Information Management, Kun Shan University, Yung-Kang, Tainan 71023, Taiwan
b Department of Applied Mathematics, Chung Yung Christian University, Chung-Li 32023, Taiwan
Abstract:Cluster validity indexes can be used to evaluate the fitness of data partitions produced by a clustering algorithm. Validity indexes are usually independent of clustering algorithms. However, the values of validity indexes may be heavily influenced by noise and outliers. These noise and outliers may not influence the results from clustering algorithms, but they may affect the values of validity indexes. In the literature, there is little discussion about the robustness of cluster validity indexes. In this paper, we analyze the robustness of a validity index using the ? function of M-estimate and then propose several robust-type validity indexes. Firstly, we discuss the validity measure on a single data point and focus on those validity indexes that can be categorized as the mean type of validity indexes. We then propose median-type validity indexes that are robust to noise and outliers. Comparative examples with numerical and real data sets show that the proposed median-type validity indexes work better than the mean-type validity indexes.
Keywords:Cluster validity index   Clustering algorithms   Fuzzy c-means   Partition membership   Mean   Median   Robust   Noise   Outlier
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号