首页 | 本学科首页   官方微博 | 高级检索  
     

复杂场景条件下的运动目标检测算法
引用本文:李俊韬,张海,范跃祖,王力. 复杂场景条件下的运动目标检测算法[J]. 光电工程, 2004, 31(Z1): 36-39
作者姓名:李俊韬  张海  范跃祖  王力
作者单位:北京航空航天大学,自动化科学与电气工程学院,北京,100083
基金项目:北京市南中轴路 BRT 智能公交系统项目
摘    要:针对复杂场景条件下运动目标检测方法存在的局限性,提出了一种基于运动检测和静止图像分割相融合的算法。采用相邻帧差法结合建立的假设检验模型进行自适应的运动目标检测;为消除孔径效应和噪声的影响,根据运动目标检测的结果,在当前帧利用区域增长法融合运动分割的结果。试验结果表明,算法能从复杂场景的图像序列中有效地检测和提取出运动目标,并有很强的鲁棒性。

关 键 词:目标探测  计算机视觉  活动目标  鲁棒性
文章编号:1003-501X(2004)Sup-0036-04
收稿时间:2004-05-25
修稿时间:2004-05-25

A detection algorithm for moving targets in complex scenes
LI Jun-tao,ZHANG Hai,FAN Yue-zu,WANG Li. A detection algorithm for moving targets in complex scenes[J]. Opto-Electronic Engineering, 2004, 31(Z1): 36-39
Authors:LI Jun-tao  ZHANG Hai  FAN Yue-zu  WANG Li
Abstract:In view of the limits existing in detecting moving targets in complex scenes, a fusion algorithm based on moving targets detection and static image segmentation is proposed. Adaptive moving targets can be detected by using a hypothesis test model and the adjacent frame difference. In order to eliminate aperture effect and noise influence, the moving segmentation results are fused by means of region-growing method in current frame according to the detected results of the moving targets. The test results show that the moving targets can be effectively detected and extracted from the image sequence of the complex scenes. The proposed algorithm is effective with strong robustness.
Keywords:Target detection  Computer vision  Moving target  Robustness  
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号