首页 | 本学科首页   官方微博 | 高级检索  
     


Mutagenesis and modeling of the neurotensin receptor NTR1. Identification of residues that are critical for binding SR 48692, a nonpeptide neurotensin antagonist
Authors:C Labbé-Jullié  S Barroso  D Nicolas-Etève  JL Reversat  JM Botto  J Mazella  JM Bernassau  P Kitabgi
Affiliation:Institut de Pharmacologie Moléculaire et Cellulaire du CNRS, Université de Nice-Sophia Antipolis, Sophia Antipolis, 660 Route des Lucioles, 06560 Valbonne, France.
Abstract:The two neurotensin receptor subtypes known to date, NTR1 and NTR2, belong to the family of G-protein-coupled receptors with seven putative transmembrane domains (TM). SR 48692, a nonpeptide neurotensin antagonist, is selective for the NTR1. In the present study we attempted, through mutagenesis and computer-assisted modeling, to identify residues in the rat NTR1 that are involved in antagonist binding and to provide a tentative molecular model of the SR 48692 binding site. The seven putative TMs of the NTR1 were defined by sequence comparison and alignment of bovine rhodopsin and G-protein-coupled receptors. Thirty-five amino acid residues within or flanking the TMs were mutated to alanine. Additional mutations were performed for basic residues. The wild type and mutant receptors were expressed in COS M6 cells and tested for their ability to bind 125I-NT and 3H]SR 48692. A tridimensional model of the SR 48692 binding site was constructed using frog rhodopsin as a template. SR 48692 was docked into the receptor, taking into account the mutagenesis data for orienting the antagonist. The model shows that the antagonist binding pocket lies near the extracellular side of the transmembrane helices within the first two helical turns. The data identify one residue in TM 4, three in TM 6, and four in TM 7 that are involved in SR 48692 binding. Two of these residues, Arg327 in TM 6 and Tyr351 in TM 7, play a key role in antagonist/receptor interactions. The former appears to form an ionic link with the carboxylic group of SR 48692, as further supported by structure-activity studies using SR 48692 analogs. The data also show that the agonist and antagonist binding sites in the rNTR1 are different and help formulate hypotheses as to the structural basis for the selectivity of SR 48692 toward the NTR1 and NTR2.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号