首页 | 本学科首页   官方微博 | 高级检索  
     

r-SVR中参数r与输入噪声间线性反比关系的仿真研究
引用本文:朱嘉钢,王士同,杨静宇. r-SVR中参数r与输入噪声间线性反比关系的仿真研究[J]. 计算机科学, 2005, 32(9): 205-207
作者姓名:朱嘉钢  王士同  杨静宇
作者单位:南京理工大学计算机科学与工程系,南京,210094;江南大学信息工程学院,无锡,214035;江南大学信息工程学院,无锡,214035;南京理工大学计算机科学与工程系,南京,210094
基金项目:本文的工作得到国家自然科学基金资助(60225015),江苏省自然科学基金(BK2003017),南京大学软件新技术国家重点实验室开放课题和江苏计算机技术重点实验室开放课题的资助.
摘    要:
为研究r范数-支持向量回归机r-SVR的鲁棒性,验证r-SVR中参数r与输入噪声方差之间的近似反比线性关系,对r-SVR进行了仿真.推导出了作为仿真的依据的r-SVR的解的形式和对其进行求解的牛顿迭代公式.仿真结果显示:输入噪声为高斯分布时,r-SVR中参数r与输入噪声方差之间存在近似线性反比关系;这一关系曲线随着信噪比增加而斜率减小、整个曲线下移.这一结果印证和丰富了现前的理论推导结果,为在已知输入高斯噪声方差时合理地选择r提供了更可信的依据.

关 键 词:支持向量机  支持向量回归机  r范数损失函数  计算机仿真

Experimental Studies on Inversely Linear Dependency between r and the Input Noise in r-support Vector Regression
ZHU Jia-Gang,WANG Shi-Tong,YANG Jing-Yu. Experimental Studies on Inversely Linear Dependency between r and the Input Noise in r-support Vector Regression[J]. Computer Science, 2005, 32(9): 205-207
Authors:ZHU Jia-Gang  WANG Shi-Tong  YANG Jing-Yu
Affiliation:ZHU Jia-Gang,WANG Shi-Tong, YANG Jing-Yu (1.Department of Computer Science and Technology, Nanjing University of Science and Technology, Nanjing 210094;2.School of Information
Abstract:
When the distribution of the input noise is known, the optimal parameter choice for the loss function can help SVR enhance its robustness. R-loss function is a more general form of both quadratic loss function and Laplacian loss function. Therefore, research on the dependency relationship between parameter r in r-loss function and input noise has more general significance. It has been theoretically deduced that inversely linear dependency exists between r and the input noise in r-SVR. In this paper, we intend to validate the linear dependency between r and the input noise through studying its implementation method and simulations. We derive the solution of r-SVR by using the Newton descent method. Our experimental results confirm the previously obtained theoretical conclusion.
Keywords:Support vector machines(SVM)  Support vector regression(SVR)  R-loss function  Simulations
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机科学》浏览原始摘要信息
点击此处可从《计算机科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号