首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进inception的脱机手写汉字识别
引用本文:陈站,邱卫根,张立臣. 基于改进inception的脱机手写汉字识别[J]. 计算机应用研究, 2020, 37(4): 1244-1246,1251
作者姓名:陈站  邱卫根  张立臣
作者单位:广东工业大学 计算机学院,广州510006;广东工业大学 计算机学院,广州510006;广东工业大学 计算机学院,广州510006
摘    要:
由于字形的复杂多变,脱机手写汉字的识别一直是模式识别的难题,深度卷积神经网络的发展为其提供了一种直接有效的解决方案。研究基于inceptions 结构神经网络的脱机手写汉字识别,提出了一种inception结构的改进方法,它具有结构更加简单、网络深度扩展更加容易、需要的训练参数量更少的优点。该方法在数据集CISIA-HWDB1.1 上进行了实验验证,采用随机梯度下降优化算法,模型达到了96.95%的平均准确率。实验结果表明,使用改进的inception结构在图像分类上具有更好的鲁棒性,更容易扩展到其他应用领域。

关 键 词:脱机手写汉字  卷积神经网络  inception
收稿时间:2018-09-19
修稿时间:2018-11-22

Offline handwritten Chinese character recognition based on improved inception
chenzhan,qiuweigen and zhanglichen. Offline handwritten Chinese character recognition based on improved inception[J]. Application Research of Computers, 2020, 37(4): 1244-1246,1251
Authors:chenzhan  qiuweigen  zhanglichen
Affiliation:School of Computers Guangdong University of Technology,,
Abstract:
Due to the complexity and variety of glyphs, offline handwritten Chinese character recognition has always been a difficult problem of pattern recognition. The development of deep convolutional neural networks provides a direct and effective solution to this problem. This paper studied offline handwritten Chinese character recognition based on inceptions neural network. It proposed an improved inception structure, which took the advantages of simpler structure, easier network depth expansion and less training parameters. The method used the proposed structure to verifiy on dataset CISIA-HWDB1.1. The model achieved an average accuracy of 96.95%, by using stochastic gradient descent optimization algorithm. Experimental result shows that the improved inception structure has better generalization performance and robustness in image classification, and can be easily extended to other applications.
Keywords:offline handwritten Chinese characters   convolutional neural network   inception
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号