首页 | 本学科首页   官方微博 | 高级检索  
     

基于语义位置和区域划分的兴趣点推荐模型
作者姓名:刘辉  万程峰
作者单位:重庆邮电大学通信与信息工程学院,重庆400065;重庆邮电大学通信新技术应用研究中心,重庆400065;重庆信科设计有限公司,重庆401121;重庆邮电大学通信与信息工程学院,重庆400065;重庆邮电大学通信新技术应用研究中心,重庆400065
摘    要:针对现有的位置社交网络研究工作对兴趣点相关的用户语义位置信息挖掘不够充分,且大多推荐算法忽略了兴趣点所在区域对推荐结果的影响,提出了一种新型兴趣点推荐模型(USTTGD)。首先采用分割时间的潜在狄利克雷分配主题模型(latent Dirichlet allocation,LDA),基于签到记录中的语义位置信息挖掘时间主题下的用户时间偏好,然后将兴趣点所处区域划分为网格,以评估区域影响;接着应用边缘加权的个性化PageRank(edge-weighted personalized PageRank,EwPPR)来建模兴趣点之间的连续过渡;最后将用户时间偏好、区域偏好和连续过渡偏好融合为一个统一的推荐框架。通过在真实数据集上实验验证,与其他传统推荐模型相比,USTTGD模型在准确率和召回率上有了显著的提升。

关 键 词:位置社交网络  语义位置  兴趣点推荐  时间主题  区域影响  
收稿时间:2018-08-06
修稿时间:2019-12-26
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号