首页 | 本学科首页   官方微博 | 高级检索  
     


Architecture of a complex between the sigma70 subunit of Escherichia coli RNA polymerase and the nontemplate strand oligonucleotide. Luminescence resonance energy transfer study
Authors:E Heyduk  T Heyduk
Affiliation:Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University Medical School, St. Louis, Missouri 63104, USA. heydukt@wpogate.slu.edu
Abstract:
We used luminescence energy transfer measurements to determine the localization of 5'- and 3'-ends of a 12-nucleotide nontemplate strand oligonucleotide bound to sigma70 holoenzyme. Five single reactive cysteine mutants of sigma70 (cysteine residues at positions 1, 59, 366, 442, and 596) were labeled with a europium chelate fluorochrome (donor). The oligonucleotide was modified at the 5'- or at the 3'-end with Cy5 fluorochrome (acceptor). The energy transfer was observed upon complex formation between the donor-labeled sigma70 holoenzyme and the acceptor-labeled nontemplate strand oligonucleotide, whereas no interaction was observed with the template strand oligonucleotide. The oligonucleotide was bound in one preferred orientation. This observation together with the sequence specificity of single-stranded oligonucleotide interaction suggests that two mechanisms of discrimination between the template and nontemplate strand are used by sigma70: sequence specificity and strand polarity specificity. The bound oligonucleotide was found to be close to residue 442, confirming that the single-stranded DNA binding site of sigma70 is located in an alpha-helix containing residue 442. The 5'-end of the oligonucleotide was oriented toward the COOH terminus of the helix.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号