首页 | 本学科首页   官方微博 | 高级检索  
     


The Virtual Laboratory: a toolset to enable distributed molecular modelling for drug design on the World‐Wide Grid
Authors:Rajkumar Buyya  Kim Branson  Jon Giddy  David Abramson
Abstract:Computational Grids are emerging as a new paradigm for sharing and aggregation of geographically distributed resources for solving large‐scale compute and data intensive problems in science, engineering and commerce. However, application development, resource management and scheduling in these environments is a complex undertaking. In this paper, we illustrate the development of a Virtual Laboratory environment by leveraging existing Grid technologies to enable molecular modelling for drug design on geographically distributed resources. It involves screening millions of compounds in the chemical database (CDB) against a protein target to identify those with potential use for drug design. We have used the Nimrod‐G parameter specification language to transform the existing molecular docking application into a parameter sweep application for executing on distributed systems. We have developed new tools for enabling access to ligand records/molecules in the CDB from remote resources. The Nimrod‐G resource broker along with molecule CDB data broker is used for scheduling and on‐demand processing of docking jobs on the World‐Wide Grid (WWG) resources. The results demonstrate the ease of use and power of the Nimrod‐G and virtual laboratory tools for grid computing. Copyright © 2003 John Wiley & Sons, Ltd.
Keywords:Grid computing  drug design  application scheduling  grid economy
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号