首页 | 本学科首页   官方微博 | 高级检索  
     

基于轻量级网络的实时人体关键点检测算法
作者姓名:胡江颢  王红雨  乔文超  马靖煊
作者单位:上海交通大学 仪器科学与工程系, 上海 200240
摘    要:为提升人体姿态估计在移动终端设备上的运行速度与实时性,提出一种改进的人体关键点检测算法.通过将MobileNetV2轻量级主干网络与深度可分离卷积模块相结合加速特征提取过程,使用精炼网络进行多尺度人体关键点预测,并利用融合网络整合多个尺度的预测结果得到最终人体关键点检测结果.实验结果表明,与传统CPM算法相比,该算法在...

关 键 词:深度可分离卷积  多尺度预测  人体关键点检测  轻量级主干网络  融合网络
收稿时间:2019-12-27
修稿时间:2020-03-19
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算机工程》浏览原始摘要信息
点击此处可从《计算机工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号