首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of ball-milling on lithium insertion into multi-walled carbon nanotubes synthesized by thermal chemical vapour deposition
Affiliation:1. School of Chemical and Metallurgical Engineering, University of the Witwatersrand, South Africa;2. Department of Electrical and Mining Engineering, University of South Africa, South Africa
Abstract:The effects of ball-milling on Li insertion into multi-walled carbon nanotubes (MWNTs) are presented. The MWNTs are synthesized on supported catalysts by thermal chemical vapour deposition, purified, and mechanically ball-milled by the high energy ball-milling. The purified MWNTs and the ball-milled MWNTs were electrochemically inserted with Li. Structural and chemical modifications in the ball-milled MWNTs change the insertion–extraction properties of Li ions into/from the ball-milled MWNTs. The reversible capacity (Crev) increases with increasing ball-milling time, namely, from 351 mAh g?1 (Li0.9C6) for the purified MWNTs to 641 mAh g?1 (Li1.7C6) for the ball-milled MWNTs. The undesirable irreversible capacity (Cirr) decreases continuously with increase in the ball-milling time, namely, from 1012 mAh g?1 (Li2.7C6) for the purified MWNTs to 518 mAh g?1 (Li1.4C6) for the ball-milled MWNTs. The decrease in Cirr of the ball-milled samples results in an increase in the coulombic efficiency from 25% for the purified samples to 50% for the ball-milled samples. In addition, the ball-milled samples maintain a more stable capacity than the purified samples during charge–discharge cycling.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号