首页 | 本学科首页   官方微博 | 高级检索  
     


New 1,3,4-oxadiazole containing materials with the effective leading substituents: The electrochemical properties,optical absorptions,and the electronic structures
Affiliation:1. Key Laboratory for Supramolecular Structure and Materials of Ministry of Education, Jilin University, Changchun 130012, PR China;2. Department of Chemistry, Jilin University, Changchun 130012, PR China;3. Department of Materials Science, Jilin University, Changchun 130012, PR China;1. Department of Material and Chemistry Engineering, Henan Institute of Engineering, Zhengzhou 450007, PR China;2. Department of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China;1. Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700 032, India;2. Department of Physics, Jadavpur University, Kolkata 700 032, India;3. National Synchrotron Radiation Research Center, 101, Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan;1. School of Computer Science, Qinghai Normal University, Xining 810008, China;2. Network Information Center, Qinghai Normal University, Xining 810008, China
Abstract:The electrochemical and optical absorption properties as well as the thermal stabilities of a series of 1,3,4-oxadiazole dimers 1,3-bis2-(4-methylphenyl)-1,3,4-oxadiazol-5-yl]benzene (OXD-X) and its derivatives with the different alkoxy substituents on the central benzene ring such as single bondO(CH2)n?1CH3 (OXD-An, n = 3, 7, 10, 16), single bondO(CH2)nOC6H5CH3 (OXD-Bn, n = 6), and single bondO(CH2)nOC6H4Ndouble bondNC6H4OCH3 (OXD-Cn, n = 3, 6, 10) are studied. The DSC measurements exhibit dramatically elevated glass transition temperatures for OXD-X and OXD-An (120–245 °C) in contrast to the well-known PBD (~60 °C), indicating the better thermal stabilities. From OXD-X to OXD-An, OXD-Bn or OXD-Cn, the cyclic voltammograms and UV–vis absorption spectroscopy display significant variation, in which the later three species show additional lower energy absorptions at λ > 330 nm compared with OXD-X and particularly, both of OXD-Bn and OXD-Cn display an oxidation peak at ~+1.0 V and two successive redox reactions occur for OXD-Cn. Theoretically, the B3LYP/6-31g calculations explore that these extraordinary properties are due to the influence of the substituents on the benzene ring to the frontier molecular orbital distribution, especially the single bondO(CH2)nOC6H4Ndouble bondNC6H4OCH3 groups in OXD-Cn deduce the new pictures of the frontier molecular orbitals, causing the electron-transporting behavior originally happening on the molecular skeleton transferred to the side chain.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号