首页 | 本学科首页   官方微博 | 高级检索  
     

Rudimentary结构等价性及其应用研究
引用本文:彭青松,张佑生,汪荣贵. Rudimentary结构等价性及其应用研究[J]. 小型微型计算机系统, 2005, 26(10): 1842-1845
作者姓名:彭青松  张佑生  汪荣贵
作者单位:1. 上海海事大学,计算机系,上海,200135
2. 合肥工业大学,计算机科学与技术系,安微,合肥,230009
基金项目:安徽省自然科学基金项目(03042207)资助.
摘    要:Bayesian网的结构学习是Bayesian网研究的难点之一.当问题中的变量较多时,通过结构学习得到的网络结构往往不具有唯一性.文中通过对Bayesian网结构等价性的研究,提出了Rudimentary结构等价性定理,并给出了该定理的证明.该等价性定理为提高结构学习的速度和优化Bayesian网的结构提供了理论依据.实验结果表明该定理具有较好的实用价值.

关 键 词:Rudimentary结构 最小描述长度 Bayesian网 结构学习
文章编号:1000-1220(2005)10-1842-04
收稿时间:2004-04-09
修稿时间:2004-04-09

Research on the Theory and Application of Rudimentary Structure Equivalence
PENG Qing-song,ZHANG You-sheng,WANG Rong-gui. Research on the Theory and Application of Rudimentary Structure Equivalence[J]. Mini-micro Systems, 2005, 26(10): 1842-1845
Authors:PENG Qing-song  ZHANG You-sheng  WANG Rong-gui
Affiliation:1 Department of Computer Science and Technology, Shanghai Maritime University, Shanghai 200135, China; 2 Department of Computer Science and Technology, Hefei University of Technology, Hefei 230009, China
Abstract:Bayesian Network is a kind of probabilistic graphical model, which can express the conditional probability into graphical formula. Structural learning and parameter learning of Bayesian Networks are two main factors of it's application. The structural learning process maybe time consuming when the number of variables arise, and the results can be in different formulas , which are equivalence class actually. Theory of the equivalence of rudimentary structure is presented and proved, which shows that the Bayesian Networks of the same rudimentary structure are of the same description length to the database. And this theory can improve the efficiency of structure learning. Experimental results show that it is practical to the refinement of the ALARM network.
Keywords:Rudimentary structure   the minimum description length    Bayesian networks, structure learning
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号