首页 | 本学科首页   官方微博 | 高级检索  
     

SUCE:基于聚类集成的半监督二分类方法
作者姓名:闵帆  王宏杰  刘福伦  王轩
作者单位:西南石油大学 计算机科学学院, 四川 成都 610500
摘    要:半监督学习和集成学习是目前机器学习领域中的重要方法。半监督学习利用未标记样本,而集成学习综合多个弱学习器,以提高分类精度。针对名词型数据,本文提出一种融合聚类和集成学习的半监督分类方法SUCE。在不同的参数设置下,采用多个聚类算法生成大量的弱学习器;利用已有的类标签信息,对弱学习器进行评价和选择;通过集成弱学习器对测试集进行预分类,并将置信度高的样本放入训练集;利用扩展的训练集,使用ID3、Nave Bayes、 kNN、C4.5、OneR、Logistic等基础算法对其他样本进行分类。在UCI数据集上的实验结果表明,当训练样本较少时,本方法能稳定提高多数基础算法的准确性。

关 键 词:集成学习  聚类  聚类集成  半监督  二分类
点击此处可从《智能系统学报》浏览原始摘要信息
点击此处可从《智能系统学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号