首页 | 本学科首页   官方微博 | 高级检索  
     

基于混沌搜索和权重学习的教与学优化算法及其应用
引用本文:柳缔西子1,范勤勤1,2,胡志华1. 基于混沌搜索和权重学习的教与学优化算法及其应用[J]. 智能系统学报, 2018, 13(5): 818-828. DOI: 10.11992/tis.201705017
作者姓名:柳缔西子1  范勤勤1  2  胡志华1
作者单位:1. 上海海事大学 物流研究中心, 上海 201306;2. 华东理工大学 化工过程先进控制和优化技术教育部重点实验室, 上海 200237
摘    要:
针对教与学优化算法容易陷入早熟收敛的问题,本研究提出了一种基于混沌搜索和权重学习的教与学优化(teaching-learning-based optimization algorithm based on chaotic search and weighted learning,TLBO-CSWL)算法。在TLBO-CSWL算法的教学阶段,不仅利用权重学习得到的个体来指引种群的进化,而且还使用正态分布随机数来替代原有的均匀随机数。另外,TLBO-CSWL还使用Logistics混沌搜索策略来提高其全局搜索能力。仿真结果表明,TLBO-CSWL的整体优化性能要好于其他所比较的算法。最后,将TLBO-CSWL用于求解非合作博弈纳什均衡问题,获得满意的结果。

关 键 词:教与学优化  权重学习  启发式算法  混沌搜索  全局优化  进化计算  非合作博弈  纳什均衡

Teaching-learning-based optimization algorithm based on chaotic search and weighted learning and its application
LIU Dixizi1,FAN Qinqin1,2,HU Zhihua1. Teaching-learning-based optimization algorithm based on chaotic search and weighted learning and its application[J]. CAAL Transactions on Intelligent Systems, 2018, 13(5): 818-828. DOI: 10.11992/tis.201705017
Authors:LIU Dixizi1  FAN Qinqin1  2  HU Zhihua1
Affiliation:1. Logistics Research Center, Shanghai Maritime University, Shanghai 201306, China;2. MOE Key Laboratory of Advanced Control and Optimization for Chemical Processes, East China University of Science and Technology, Shanghai 200237, China
Abstract:
To avoid premature convergence, a teaching-learning-based optimization algorithm based on chaotic search and weighted learning (TLBO-CSWL) is introduced in this study. In the teaching phase, TLBO-CSWL does not only use the individuals obtained by weight learning to guide the population evolution, it also utilizes a normal random number to replace the original uniform random number. In addition, TLBO-CSWL uses a logistics chaotic search strategy to improve its global search ability. Simulation results showed that TLBO-CSWL outperformed other compared algorithms in terms of overall performance. Finally, the proposed algorithm was employed to solve two Nash equilibrium problems of non-cooperative game, and satisfactory results were obtained.
Keywords:teaching-learning-based optimization   weight learning   heuristic algorithm   chaotic search   global optimization   evolutionary computation   non-cooperative game   Nash equilibrium
点击此处可从《智能系统学报》浏览原始摘要信息
点击此处可从《智能系统学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号