首页 | 本学科首页   官方微博 | 高级检索  
     


Parameter selection of support vector regression based on hybrid optimization algorithm and its application
Authors:Xin WANG   Chunhua YANG   Bin QIN   Weihua GUI
Affiliation:School of Information Science & Engineering,Central South University,Changsha Hunan 410083,China;Department of Electric Engineering,Zhuzhou Institute of Technology,Zhuzhou Hunan 412008,China
Abstract:
Choosing optimal parameters for support vector regression (SVR) is an important step in SVR design, which strongly affects the performance of SVR. In this paper, based on the analysis of influence of SVR parameters on generalization error, a new approach with two steps is proposed for selecting SVR parameters . First the kernel function and SVM parameters are optimized roughly through genetic algorithm, then the kernel parameter is finely adjusted by local linear search. This approach has been successfully applied to the prediction model of the sulfur content in hot metal. The experiment results show that the proposed approach can yield better generalization performance of SVR than other methods.
Keywords:Support vector regression   Parameters tuning   Hybrid optimization   Genetic algorithm(GA)
点击此处可从《控制理论与应用》浏览原始摘要信息
点击此处可从《控制理论与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号