首页 | 本学科首页   官方微博 | 高级检索  
     

一种空空导弹可攻击区快速算法
引用本文:杜昌平,周德云,江爱伟. 一种空空导弹可攻击区快速算法[J]. 西北工业大学学报, 2006, 24(6): 682-685
作者姓名:杜昌平  周德云  江爱伟
作者单位:1. 西北工业大学,电子信息学院,陕西,西安,710072
2. 成都飞机设计研究所,成都,610041
摘    要:
提出一种空空导弹可攻击区快速算法。该算法将空空导弹可攻击区的快速积分计算和可攻击区多项式拟合相结合,用可攻击区多项式拟合结果作为积分计算的初始值,进行可攻击区计算。计算结果表明:该方法大大提高了积分计算的速度和空空导弹可攻击区的精度。文中成果已成功应用于某重点型号火控系统空空导弹可攻击区计算中。

关 键 词:导弹可攻击区  快速计算  多项式拟合
文章编号:1000-2758(2006)06-0682-04
收稿时间:2005-10-13
修稿时间:2005-10-13

A Better Method for Computing Air-to-Air Missile Trajectory
Du Changping,Zhou Deyun,Jiang Aiwei. A Better Method for Computing Air-to-Air Missile Trajectory[J]. Journal of Northwestern Polytechnical University, 2006, 24(6): 682-685
Authors:Du Changping  Zhou Deyun  Jiang Aiwei
Abstract:
Aim.Polynomial fitting method has been generally employed for computing the trajectory of air-to-air missile.It suffers from the following three shortcomings:(1) air-borne computer must store a large number of polynomial coefficients;(2) under certain conditions,its precision is not sufficiently high;(3) under certain conditions,the calculated results are not continuous.We now present what we believe to be a better method that can suppress these three shortcomings.In the full paper,we explain our method in detail;in this abstract,we just add some pertinent remarks to listing the two topics of explanation:(A) the polynomial fitting model of our algorithm;(B) our fast algorithm for calculating the trajectory of air-to-air missile;under topic A,we derive eqs.(1),(2)and(3) in the full paper;under topic B,we give 11 steps for implementing our fast algorithm;also under topic B,step 2 is particularly important because it enables our algorithm to start with an approximate initial value based on polynomial fitting that requires only a limited storage of polynomial fitting coefficients and is the basic reason why our algorithm is fast;still under topic B,we give eq.(4) needed by 3rd order Runge-Kutta numerical method.Finally we take as example the firing control system of the air-to-air missile of a certain fighter aircraft.Table 1 in the full paper gives the numerical results obtained with our method as compared with those obtained with traditional polynomial method.These results indicate preliminarily that the probability of success is(96.03%) for our method and only 74.56% by the traditional polynomial fitting method.
Keywords:missile trajectory  fast algorithm  polynomial fitting
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号