首页 | 本学科首页   官方微博 | 高级检索  
     


Semi-empirical correction algorithm for AC-9 measurements in a coccolithophore bloom
Authors:McKee David  Cunningham Alex  Craig Susanne
Affiliation:Department of Physics, University of Strathclyde, 107 Rottenrow, Glasgow, G4 ONG, Scotland. david.mckee@strath.ac.uk
Abstract:Values for the coefficients of absorption (a) and attenuation (c) obtained from AC-9 measurements in coccolithophore blooms do not provide satisfactory inputs for radiance transfer models. We have therefore modified the standard AC-9 scattering correction algorithm by including an extra term, F(lambda, lambda(r)), which allows for possible wavelength dependence in the scattering phase function. We estimated the magnitude of F(lambda, lambda(r)), which is unity in the standard algorithm, by adjusting the absorption and scattering values in Hydrolight radiance transfer calculations until the depth profiles of downward irradiance (E(d)) and upward radiance (L(u)) matched those measured in situ. The modified algorithm was tested with data from a phytoplankton bloom dominated by the coccolithophore Emiliania huxleyi, which occurred in the western English Channel in May 2001. In this paper, we only have sufficient data to adequately constrain the radiance transfer model in one wave band centered on 488 ma. A single value of F(lambda, lambda(r)) = 1.4 was found to produce satisfactory agreement between modeled and observed profiles at four widely spaced stations within the bloom. Measurements of the ratio of backscattering (b(b)) to total scattering (b) showed significant wavelength dependence at these stations.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号