首页 | 本学科首页   官方微博 | 高级检索  
     


Tensor-based methods for blind spatial signature estimation under arbitrary and unknown source covariance structure
Affiliation:1. Department of Teleinformatics Engineering, Federal University of Ceará, Fortaleza, Brazil;2. Institute for Information Technology, Ilmenau University of Technology, Ilmenau, Germany;1. Hume Center for National Security and Technology, Virginia Tech, Arlington, VA, 22203, United States;2. Nokia Networks, Arlington Heights, IL, 60004, United States
Abstract:
Spatial signature estimation is a problem encountered in several applications in signal processing such as mobile communications, sonar, radar, astronomy and seismology. In this paper, we propose higher-order tensor methods to solve the blind spatial signature estimation problem using planar arrays. By assuming that sources' powers vary between successive time blocks, we recast the spatial and spatiotemporal covariance models for the received data as third-order PARATUCK2 and fourth-order Tucker4 tensor decompositions, respectively. Firstly, by exploiting the multilinear algebraic structure of the proposed tensor models, new iterative algorithms are formulated to blindly estimate the spatial signatures. Secondly, in order to achieve a better spatial resolution, we propose an expanded form of spatial smoothing that returns extra spatial dimensions in comparison with the traditional approaches. Additionally, by exploiting the higher-order structure of the resulting expanded tensor model, a multilinear noise reduction preprocessing step is proposed via higher-order singular value decomposition. We show that the increase on the tensor order provides a more efficient denoising, and consequently a better performance compared to existing spatial smoothing techniques. Finally, a solution based on a multi-stage Khatri–Rao factorization procedure is incorporated as the final stage of our proposed estimators. Our results demonstrate that the proposed tensor methods yield more accurate spatial signature estimates than competing approaches while operating in a challenging scenario where the source covariance structure is unknown and arbitrary (non-diagonal), which is actually the case when sample covariances are computed from a limited number of snapshots.
Keywords:Array processing  Spatial signature estimation  Tensor decomposition  Alternating least squares
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号