首页 | 本学科首页   官方微博 | 高级检索  
     

西非及亚太地区海上油田钻井完井投资估算模型
引用本文:汪东进,李秀生,张海颖,王震. 西非及亚太地区海上油田钻井完井投资估算模型[J]. 石油勘探与开发, 2012, 39(4): 500-504
作者姓名:汪东进  李秀生  张海颖  王震
作者单位:1. 中国石油大学(北京);中国石油天然气集团公司
2. 中国石油大学(北京)
3. 中国科学院科技政策与管理科学研究所
基金项目:教育部哲学社会科学研究重大课题攻关项目“中国与全球油气资源重点区域合作研究”(09JZD0038)
摘    要:以西非及亚太地区86个具有代表性的油田作为样本,以BP神经网络方法为基础,将油价、水深、井数、井深、地质条件这5个影响因素作为输入层参数,钻井完井投资额作为输出层参数,构建海上油田钻井完井投资的BP神经网络模型,并与回归分析模型进行比较分析。结果表明,由于BP神经网络方法是一个主动学习的过程,可以有效地描述变量之间的非线性关系,体现其解决复杂问题的优势,构建的模型具有合理性和实际参考价值。构建的钻井完井投资BP神经网络估算模型具有很好的拟合精度,大部分样本的预测误差在30%以内,基本满足工程开发所要求的误差精度,而且误差水平远远低于回归分析模型。

关 键 词:西非  亚太地区  海上油田  钻井完井投资估算  BP神经网络

A model for estimating the drilling and completion investment in offshore oilfields in West Africa and the Asia-Pacific region
Wang Dongjin , Li Xiusheng , Zhang Haiying , Wang Zhen. A model for estimating the drilling and completion investment in offshore oilfields in West Africa and the Asia-Pacific region[J]. Petroleum Exploration and Development, 2012, 39(4): 500-504
Authors:Wang Dongjin    Li Xiusheng    Zhang Haiying    Wang Zhen
Affiliation:1. China University of Petroleum (Beijing), Beijing 102249, Chin; 2. China National Petroleum Corporation (CNPC), Beijing 100724, China;China University of Petroleum (Beijing), Beijing 102249, China;Science and Technology Policy and Management Science Research Institute, Chinese Academy of Sciences, Beijing 100190, China;China University of Petroleum (Beijing), Beijing 102249, China
Abstract:A BP neural network model for estimating the drilling and completion investment is built based on the BP neural network method with 86 representative offshore oilfields in West Africa and Asia Pacific as samples. The model uses five factors, including the oil price, water depth, well number, well depth and geologic condition, as the input parameters, and outputs the drilling and completion investment parameters. Comparison of the model with a regression analysis model shows that the established model is reasonable and valuable because the BP neural network is an active learning process, able to effectively describe the non-liner relationship between variables and solve complicated problems. The established BP neural network model has high fitting accuracy and the errors of most samples are within 30%, satisfying the requirements for engineering development, and are much smaller than that of regression analysis.
Keywords:West Africa   Asia-Pacific   offshore oil field   drilling and completion investment estimate   BP neural network
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《石油勘探与开发》浏览原始摘要信息
点击此处可从《石油勘探与开发》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号