首页 | 本学科首页   官方微博 | 高级检索  
     

基于振动信号的数控机床丝杠副性能退化研究
引用本文:黄海凤,高宏力,许明恒,张筱辰,王耀琦,王振刚. 基于振动信号的数控机床丝杠副性能退化研究[J]. 机械科学与技术, 2013, 32(5): 631-635
作者姓名:黄海凤  高宏力  许明恒  张筱辰  王耀琦  王振刚
作者单位:西南交通大学机械工程学院,成都,610031
基金项目:国家自然科学基金项目,西南交通大学校基金项目
摘    要:为研究数控机床丝杠副性能退化机理,对丝杠副性能进行评估。首先采用小波包对丝杠副螺母座、轴承座的振动信号进行分解,提取小波包分解后的各阶功率谱作为特征参数,分析丝杠进给速度、切削深度对丝杠副振动特性的影响。利用BP神经网络建立丝杠副性能退化评估模型。通过振动信号、电机驱动电流信号、进给速度、切削深度以及加工方案等评估丝杠副性能退化状态,实验证明该性能退化评估模型准确率较高。

关 键 词:丝杠副  性能退化  振动  评估模型  小波包

The Performance Degradation Based on the Vibration of NC Machine Tool Screw Pair
Abstract:Analysis vibration signals of bearing seat and nut seat with wavelet packet.Then take power spectrum of wavelet packet to be characteristic parameters.By these parameters,study performance degradation of screw pair for NC machine tool.Compare power spectrum of vibration in different feed rates and cutting depths,and try to find the effect of feed rate and cutting depth on screw vibration.In order to evaluate performance of screw pair,build performance degradation model based on BP neural network.The input parameters include vibration,current signals of screw motor,feed rate,cutting depth and processing scheme,and the output of evaulation model is the result of performance degradion for screw pair.Tests show that the evauation results are important reference for maintance of scrwe pair.
Keywords:screw pair  performance degredation  vibrations  evaluation model  wavelet packet
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号