首页 | 本学科首页   官方微博 | 高级检索  
     

基于计算智能算法的铣刀状态监测
引用本文:郑金兴,张铭钧,孟庆鑫. 基于计算智能算法的铣刀状态监测[J]. 计算机工程与科学, 2008, 30(2): 142-146
作者姓名:郑金兴  张铭钧  孟庆鑫
作者单位:哈尔滨工程大学机电学院,黑龙江,哈尔滨,150001;哈尔滨工程大学机电学院,黑龙江,哈尔滨,150001;哈尔滨工程大学机电学院,黑龙江,哈尔滨,150001
摘    要:
本文提出了基于智能融合技术进行铣刀磨损量监测和预测方法。利用多传感器对切削力和振动信号进行监测,通过频率变换提取切削力特征量,采用小波包分解技术提取振动信号特征量。通过信号特征值的组合,分别探讨了几种计算智能数据融合技术-小波神经网络、遗传神经网络、遗传小波神经网络对刀具磨损量的预测效果。实验分析表明,本文提出的几种计算智能数据融合技术均能够有效地完成刀具磨损量预测。

关 键 词:刀具磨损  数据融合  小波包分解  小波神经网络  遗传神经网络  遗传小波神经网络
文章编号:1007-130X(2008)02-0142-05
收稿时间:2007-03-02
修稿时间:2007-06-08

End Mill Wear Monitoring Based on Computational Intelligent Algorithms
ZHENG Jin-xing,ZHANG Ming-jun,MENG Qing-xin. End Mill Wear Monitoring Based on Computational Intelligent Algorithms[J]. Computer Engineering & Science, 2008, 30(2): 142-146
Authors:ZHENG Jin-xing  ZHANG Ming-jun  MENG Qing-xin
Abstract:
A computational intelligent data fusion method for monitoring end mill wear is presented in this paper.The signals of cutting force and vibration are measured with multi-sensors,the cutting force features are extracted with frequency mutation and the vibration features are extracted using wavelet package decomposition.Several computational intelligent data fusion methods,which are wavelet neural networks,genetic algorithm neural networks(GA-NN),and wavelet generic algorithm neural networks for predicting the tool wear values are discussed.The experimental results show all of these presented methods can effectively perform tool wear prediction.
Keywords:tool wear  data fusion  wavelet package decomposition  wavelet neural network  genetic neural network  genetic wavelet neural network
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与科学》浏览原始摘要信息
点击此处可从《计算机工程与科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号