首页
|
本学科首页
官方微博
|
高级检索
全部学科
医药、卫生
生物科学
工业技术
交通运输
航空、航天
环境科学、安全科学
自然科学总论
数理科学和化学
天文学、地球科学
农业科学
哲学、宗教
社会科学总论
政治、法律
军事
经济
历史、地理
语言、文字
文学
艺术
文化、科学、教育、体育
马列毛邓
全部专业
中文标题
英文标题
中文关键词
英文关键词
中文摘要
英文摘要
作者中文名
作者英文名
单位中文名
单位英文名
基金中文名
基金英文名
杂志中文名
杂志英文名
栏目中文名
栏目英文名
DOI
责任编辑
分类号
杂志ISSN号
基于MapReduce的K_means并行算法及改进
作者姓名:
衣治安
王月
作者单位:
东北石油大学计算机与信息技术学院,大庆,163318
摘 要:
针对传统k_means聚类算法在处理海量数据时所面临的内存不足、运算速度慢等问题,提出了一种基于MapReduce的K_means并行算法,同时为了改善k_means算法在初始值确定方面的盲目性,采用canopy算法进行改进。实验结果表明,基于MapReduce的K_means并行算法和改进后的算法均能产生良好的聚类效果,不仅提高了聚类质量,而且在处理大数据集方面,改进后的算法的还能够得到趋近于线性的加速比。
关 键 词:
MapReduce
k-means算法
canopy算法
并行计算
聚类
收稿时间:
2014-10-11
修稿时间:
2014-11-13
本文献已被
万方数据
等数据库收录!
点击此处可从《计算机系统应用》浏览原始摘要信息
点击此处可从《计算机系统应用》下载
免费
的PDF全文
设为首页
|
免责声明
|
关于勤云
|
加入收藏
Copyright
©
北京勤云科技发展有限公司
京ICP备09084417号