首页 | 本学科首页   官方微博 | 高级检索  
     

径向基函数随机响应面法
引用本文:胡常福,任伟新,刘旭政. 径向基函数随机响应面法[J]. 土木与环境工程学报, 2014, 36(2): 42-47
作者姓名:胡常福  任伟新  刘旭政
作者单位:[1]中南大学土木工程学院,长沙410075 [2]华东交通大学土木建筑学院,南昌330013 [3]合肥工业大学土木与水利工程学院,合肥230009
基金项目:国家自然科学基金(50678173、51278163);江西省教育厅项目(GJJ12325);铁路环境振动与噪声教育部工程研究中心资助项目
摘    要:
针对随机响应面法对非正态分布响应与标准正态分布输入之间的复杂非线性隐函数拟合不够理想的问题,基于径向基函数在杂散数据拟合方面的优异性能,提出使用径向基函数替换Hermite多项式来解决复杂非线性隐函数拟合问题.以若干个非线性解析函数和钢管混凝土肋拱极限承载力不确定性问题作为算例,验证该方法对非正态分布响应拟合的精确性和对工程问题的适用性.算例结果表明,基于径向基函数随机响应面法对高度非线性的响应与输入隐函数拟合较好;在多参数钢管混凝土拱极限承载力不确定性问题中,精度较高,且比Hermite多项式样本点数量少.

关 键 词:随机响应面法  径向基函数  非正态分布响应  极限承载力  钢管混凝土拱
收稿时间:2013-05-12

Stochastic Response Surface Method Based on Radial Basis Functions
Hu Changfu,Ren Weixin and Liu Xuzheng. Stochastic Response Surface Method Based on Radial Basis Functions[J]. Journal of Civil and Environmental Engineering, 2014, 36(2): 42-47
Authors:Hu Changfu  Ren Weixin  Liu Xuzheng
Affiliation:1. School of Civil Engineering, Central South University, Changsha 410075, P. R. China 2. School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang 330013, P. R. China 3. School of Civil Engineering and Water Conservancy, Hefei University of Technology, Hefei 230009, P. R. China)
Abstract:
For non-ideal interpolation results of complex implicit nonlinear functions between non-normal distribution response and standard normal distribution inputs using stochastic response surface method, radial basis functions was used to replace Hermite polynomials so as to solve complex implicit nonlinear function interpolation problem for its excellent performance on scattered data interpolation. A few nonlinear analytical functions and uncertainty problems of the load carrying capacity of single circular concrete filled steel tubule (CFST) arch were used as examples to test and verify the precision of proposed method in non-normal distribution response interpolation and its engineering applicability. The results show that stochastic response surface method based on radial basis functions performs well in fitting highly nonlinear input implicit functions, and can achieve high precision on multi-parameters CFST arch load carrying capacity uncertainty problems. Meanwhile, the method has less sample points compared to the Hermite polynomials method.
Keywords:stochastic response surface method  radial basis functions  non-normal distribution response  load carrying capacity  concrete filled steel tubule arch
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《土木与环境工程学报》浏览原始摘要信息
点击此处可从《土木与环境工程学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号