首页 | 本学科首页   官方微博 | 高级检索  
     

基于对象传播神经网络的抗TSM攻击音频水印算法*
引用本文:金文标,戴红亮. 基于对象传播神经网络的抗TSM攻击音频水印算法*[J]. 计算机应用研究, 2009, 26(12): 4758-4760. DOI: 10.3969/j.issn.1001-3695.2009.12.101
作者姓名:金文标  戴红亮
作者单位:1. 杭州电子科技大学,理学院,杭州,310018
2. 重庆邮电大学,计算机科学与技术学院,重庆,400065
基金项目:重庆市自然科学基金资助项目(2006BB2374)
摘    要:
提出了一种基于对象传播神经网络的抗TSM攻击音频水印算法。利用CPN自学习和自适应的特征,通过自适应改变段长的分段算法,选用具有较强稳定性的小波低频系数方差作为输入向量训练CPN,建立音频特征与水印信号的对应关系,以达到嵌入水印的目的。实验结果表明,该算法对常规音频信号处理和TSM等同步攻击具有很强的鲁棒性。

关 键 词:数字音频水印; 对象传播神经网络; 时间缩放; 小波低频系数方差

Audio watermarking algorithm robust to TSM based on counter propagation neural network
JIN Wen-biao,DAI Hong-liang. Audio watermarking algorithm robust to TSM based on counter propagation neural network[J]. Application Research of Computers, 2009, 26(12): 4758-4760. DOI: 10.3969/j.issn.1001-3695.2009.12.101
Authors:JIN Wen-biao  DAI Hong-liang
Affiliation:(1. College of Science, Hangzhou Dianzi University, Hangzhou 310018, China; 2. College of Compute Science & Technology, Chongqing University of Posts & Telecommunications, Chongqing 400065, China)
Abstract:
This paper proposed a novel CPN-based audio watermarking algorithm against time-scale modification. Utilizing the self-learning and self-adaptive capabilities of CPN and with adaptively changing the length of segment, the relationship between the important characters of audio signals and embedded watermark was learned by using the variance of low frequency wavelet coefficients with strong stability as the input of CPN, to achieve the purpose of embedding watermark. Experimental results show that the algorithm is very robust to common audio signal processing and synchronization attacks, such as TSM.
Keywords:digital audio watermarking   counter-propagation neural network   time scale modification   variance of low frequency wavelet coefficients
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号