首页 | 本学科首页   官方微博 | 高级检索  
     


One machine,one minute,three billion tetrahedra
Authors:Célestin Marot  Jeanne Pellerin  Jean-François Remacle
Affiliation:Institute of Mechanics, Materials and Civil Engineering, Université catholique de Louvain, Louvain-la-Neuve, Belgium
Abstract:
This paper presents a new scalable parallelization scheme to generate the 3D Delaunay triangulation of a given set of points. Our first contribution is an efficient serial implementation of the incremental Delaunay insertion algorithm. A simple dedicated data structure, an efficient sorting of the points, and the optimization of the insertion algorithm have permitted to accelerate reference implementations by a factor three. Our second contribution is a multithreaded version of the Delaunay kernel that is able to concurrently insert vertices. Moore curve coordinates are used to partition the point set, avoiding heavy synchronization overheads. Conflicts are managed by modifying the partitions with a simple rescaling of the space-filling curve. The performances of our implementation have been measured on three different processors: an Intel core-i7, an Intel Xeon Phi, and an AMD EPYC, on which we have been able to compute three billion tetrahedra in 53 seconds. This corresponds to a generation rate of over 55 million tetrahedra per second. We finally show how this very efficient parallel Delaunay triangulation can be integrated in a Delaunay refinement mesh generator, which takes as input the triangulated surface boundary of the volume to mesh.
Keywords:3D Delaunay triangulation  parallel delaunay  radix sort  SFC partitioning  tetrahedral mesh generation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号