摘 要: | 针对现有车底危险物检测模型结构复杂、参数量大、不易部署于端侧的问题,提出轻量化SG-YOLOv5s网络模型.对YOLOv5s网络的骨干和颈部进行优化改进,显著降低网络的参数量,大幅缩小模型的权重体积;在训练阶段采用Mixup数据增强,提高模型的泛化能力;采用SIoU替换边框回归损失函数CIoU,使危险物预测框更接近真实框,提高检测精度.鉴于车底危险物数据集较少的现状,利用智能小车拍摄大量车底碎片化图像,采用AutoStitch算法进行图像拼接,最终获得自建车底图像数据集.实验结果表明:在自建的9种模拟车底危险物数据集上,SG-YOLOv5s模型识别精确率为97.63%,相较于原YOLOv5s模型提升了1.26%,而参数量减少了71.27%,模型权重体积下降了71.28%,为后续识别模型的嵌入式部署提供了可能.
|