首页 | 本学科首页   官方微博 | 高级检索  
     


A New Family of Proton‐Conducting Electrolytes for Reversible Solid Oxide Cells: BaHfxCe0.8−xY0.1Yb0.1O3−δ
Authors:Ryan Murphy  Yucun Zhou  Lei Zhang  Luke Soule  Weilin Zhang  Yu Chen  Meilin Liu
Abstract:Reversible solid oxide cells based on ceramic proton conductors have potential to be the most efficient system for large‐scale energy storage. The performance and long‐term durability of these systems, however, are often limited by the ionic conductivity or stability of the proton‐conducting electrolyte. Here new family of solid oxide electrolytes, BaHfxCe0.8?xY0.1Yb0.1O3?δ (BHCYYb), which demonstrate a superior ionic conductivity to stability trade‐off than the state‐of‐the‐art proton conductors, BaZrxCe0.8?xY0.1Yb0.1O3?δ (BZCYYb), at similar Zr/Hf concentrations, as confirmed by thermogravimetric analysis, Raman, and X‐ray diffraction analysis of samples over 500 h of testing are reported. The increase in performance is revealed through thermodynamic arguments and first‐principle calculations. In addition, lab scale full cells are fabricated, demonstrating high peak power densities of 1.1, 1.4, and 1.6 W cm?2 at 600, 650, and 700 °C, respectively. Round‐trip efficiencies for steam electrolysis at 1 A cm?2 are 78%, 72%, and 62% at 700, 650, and 600 °C, respectively. Finally, CO2? H2O electrolysis is carried out for over 700 h with no degradation.
Keywords:carbon dioxide tolerance  electrolysis  proton conductors  solid electrolytes  solid oxide fuel cells
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号