首页 | 本学科首页   官方微博 | 高级检索  
     


Prediction of the heat transfer rate of a single layer wire-on-tube type heat exchanger using ANFIS
Authors:Mohsen Hayati   Abbas Rezaei  Majid Seifi  
Affiliation:aElectrical Engineering Department, Faculty of Engineering, Razi University, Tagh-E-Bostan, Kermanshah 67149, Iran;bComputational Intelligence Research Center, Razi University, Tagh-E-Bostan, Kermanshah 67149, Iran
Abstract:In this paper, we applied an Adaptive Neuro-Fuzzy Inference System (ANFIS) model for prediction of the heat transfer rate of the wire-on-tube type heat exchanger. Limited experimental data was used for training and testing ANFIS configuration with the help of hybrid learning algorithm consisting of backpropagation and least-squares estimation. The predicted values are found to be in good agreement with the actual values from the experiments with mean relative error less than 2.55%. Also, we compared the proposed ANFIS model to an ANN approach. Results show that the ANFIS model has more accuracy in comparison to ANN approach. Therefore, we can use ANFIS model to predict the performances of thermal systems in engineering applications, such as modeling heat exchangers for heat transfer analysis.
Keywords:Heat exchanger   Finned tube   Modelling   Heat transfer   Neural network   Fuzzy logicMots clé  s: É  changeur de chaleur   Tube aileté     Modé  lisation   Transfert de chaleur    seau neuronal   Logique floue
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号