Low-temperature thermal decomposition of dioxin-like compounds in fly ash: combination of chemical analysis with in vitro bioassays (EROD and DR-CALUX) |
| |
Authors: | Behnisch Peter A Hosoe Kazunori Shiozaki Ken Ozaki Hironori Nakamura Kazuo Sakai Shin-Ichi |
| |
Affiliation: | Life Science Research Laboratories, Kaneka Corporation, 1-8 Miyamae-Machi, Takasago, Hyogo 676-8688, Japan. |
| |
Abstract: | To investigate the dechlorination of fly ash during low-temperature treatment under oxygen-deficient conditions (thermocatalyic treatment or Hagenmaier process), six fly ash samples from six different incineration plants were treated in a laboratory experiment or in the actual plant, either under ideal (400 degrees C, 120 min) or intermediate (300 degrees C, 30 min) conditions. The aim of the present study was to confirm the decrease in the I-TEQ (international toxicity equivalency) of polychlorinated dibenzo-p-dioxins/-furans (PCDD/Fs) and coplanar polychlorinated biphenyls (co-PXBs) and, also for the first time, the decrease in the sum of dioxin-like toxicity (bioassay- or bio-TEQ) of all kinds of other dioxin-like Ah receptor agonists (such as PXDD/Fs, PXBs, PXN, X = Br, F) measured by two state-of-the-art cell-based Ah receptor-dependent bioassays: H4IIE-Ethoxy-Resorufin-o-Deethylase (EROD) and H4IIE-luc/DR-Chemical Activated Luciferase expression (DR-CALUX). The treatment efficiency was calculated on the basis of the reduction in the I-TEQ and bio-TED values. For these fly ash samples, the treatment efficiency, as measured by chemical analysis, was higher than 99%, and 85%-99%, in the case of the bio-TED values, indicating that these Ah receptor binding toxic compounds were sufficiently decomposed. Bio-TEQ values for untreated fly ash samples (n = 6) were on average 1.2 times (range 0.7-1.9), for the H4IIE-EROD assay, and 2.8 times (1.1-4.9), for the DR-CALUX assay, higher than I-TEQ values measured by chemical analyses (sum of PCDD/Fs and co-PCBs). In the case of these fly ash samples treated under ideal conditions and therefore low in contaminants, the bio-TEQ values were on average 1.4 times (range 0.9-1.8), for the H4IIE-EROD assay, and 5.1 times (range 1.2-12), for the DR-CALUX assay, higher than the I-TEQ values. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|