首页 | 本学科首页   官方微博 | 高级检索  
     


On The Eigenvalues of the Spectral Second Order Differentiation Operator and Application to the Boundary Observability of the Wave Equation
Authors:T. Z. Boulmezaoud  J. M. Urquiza
Affiliation:(1) Laboratoire de Mathématiques de Versailles, Université de Versailles SQY, 45 avenue des Etats-Unis - Batiment Fermat, 78035 Versailles, France;(2) Centre de Recherches Mathématiques, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal (Québec), H3C 3J7, Canada
Abstract:The behaviour of the eigenvalues of the spectral second-order differentiation operator is studied and the results are used to investigate the boundary observability of the one dimensional wave equation approximated with a spectral Galerkin method. New explicit estimates of the discrete eigenvalues are given. These estimates improve the previous results on the subject especially for the portion of eigenvalues converging exponentially to those of the continuous problem. Although the boundary observability property of the discretized wave equation is not uniform with respect to the discretization parameter, we show that a uniform observability estimate can be obtained by filtering out the highest eigenmodes.
Keywords:Spectral methods  differentiation matrix  eigenvalues  Lommel polynomials  wave equation  observability  filtering
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号