首页 | 本学科首页   官方微博 | 高级检索  
     

一种合成孔径声呐图像目标分割方法
引用本文:翟厚曦,江泽林,张鹏飞,田杰,刘纪元. 一种合成孔径声呐图像目标分割方法[J]. 仪器仪表学报, 2016, 37(4): 887-894
作者姓名:翟厚曦  江泽林  张鹏飞  田杰  刘纪元
作者单位:1.中国科学院声学研究所北京 100190; 2.中国科学院大学北京 100190,中国科学院声学研究所北京 100190,中国科学院声学研究所北京 100190,中国科学院声学研究所北京 100190,中国科学院声学研究所北京 100190
基金项目:国家自然科学基金(11174313,11204343,11304343)、中科院声学所青年人才领域前沿(Y454311211)项目资助
摘    要:合成孔径声呐图像的信噪比低于普通光学图像,使图像分割成为合成孔径声呐图像处理中的重要环节。本文研究了表示合成孔径声呐图像数据分布的瑞利混合模型,结合马尔科夫随机场模型,将其应用于声呐图像水下目标(亮区)分割;通过最大期望算法分别估计目标和背景的瑞利混合模型参数,并利用该参数使用Graph cut方法进行马尔科夫随机场图像分割,通过重复迭代,最后形成稳定的目标分割结果;对实际的声呐图像进行了数据分析及目标分割,结果表明瑞利混合模型在描述合成孔径声呐声图上有良好的性能,可以改善目标分割的效果。

关 键 词:图像分割   瑞利混合模型   马尔科夫随机场

Object segmentation method for synthetic aperture sonar images
Zhai Houxi,Jiang Zelin,Zhang Pengfei,Tian Jie and Liu Jiyuan. Object segmentation method for synthetic aperture sonar images[J]. Chinese Journal of Scientific Instrument, 2016, 37(4): 887-894
Authors:Zhai Houxi  Jiang Zelin  Zhang Pengfei  Tian Jie  Liu Jiyuan
Affiliation:1. Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China; 2. University of Chinese Academy of Sciences, Beijing 100190, China,Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China,Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China,Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China and Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China
Abstract:Synthetic aperture sonar images have a lower signal noise ratio than common optical images, which makes image segmentation an important step in synthetic aperture sonar image processing. This paper studies the Rayleigh mixture model representing synthetic aperture sonar underwater image data distribution. Combining with Markov random field model, the Rayleigh mixture model is applied to the object segmentation in high resolution sonar image. The quick unsupervised iterative method is used to segment the object (highlight region). The expectation Maximization algorithm is used to estimate the Rayleigh mixture model parameters of the object and background, respectively; and the model parameters are used to conduct Markov random field image segmentation with graph cut method. Through repeat iteration, the algorithm converges, and gives stable final object segmentation result. The data analysis and object segmentation of real sonar image data were conducted in experiment; the result shows that the Rayleigh mixture model is capable of describing complex object echo distribution, thus improve the effect of object segmentation.
Keywords:image segmentation   Rayleigh mixture model   Markov random field
本文献已被 CNKI 等数据库收录!
点击此处可从《仪器仪表学报》浏览原始摘要信息
点击此处可从《仪器仪表学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号