首页 | 本学科首页   官方微博 | 高级检索  
     

聚变堆包层第一壁缩比部件激光选区熔化成形研究
引用本文:汪志勇,吴杰峰,刘志宏,马建国,翟华.聚变堆包层第一壁缩比部件激光选区熔化成形研究[J].精密成形工程,2023,15(6):111-119.
作者姓名:汪志勇  吴杰峰  刘志宏  马建国  翟华
作者单位:中国科学院合肥物质科学研究院 等离子体物理研究所,合肥 230031;中国科学技术大学,合肥 230026;中国科学院合肥物质科学研究院 等离子体物理研究所,合肥 230031;特种焊接技术安徽省重点实验室,安徽 淮南 232063;中国科学院合肥物质科学研究院 等离子体物理研究所,合肥 230031;特种焊接技术安徽省重点实验室,安徽 淮南 232063;合肥综合性国家科学中心能源研究院,合肥 230031;合肥工业大学 航空结构件成形制造与装备安徽省重点实验室,合肥 230009
基金项目:等离子体所科学基金(DSJJ–2021–06);中央高校基本科研业务费专项资金(PA2022GDSK0058)
摘    要:目的 研究激光选区熔化(SLM)成形第一壁缩比结构的组织性能。方法 以316L粉末为原材料,运用Inspire软件对不同成形姿势下第一壁缩比结构的应力与变形情况进行数值模拟,选择最佳成形姿势进行SLM成形,以控制整体变形,并对成形零件进行显微组织观察与力学性能测试。结果 实验结果表明,与立放和侧放2种成形姿势相比,平放时残余应力与变形最小,最大残余应力为29.68 MPa,最大变形量为0.29 mm。成形件微观组织呈现各向异性,xy方向主要为粗大的胞状晶组织,zx方向为细长的柱状晶组织。力学测试结果显示,xy方向的抗拉强度为672.1 MPa,伸长率为48.2%,冲击韧性为100.6 J/cm2;zx方向的抗拉强度为646.9 MPa,伸长率64.4%,冲击韧性为136.3 J/cm2。结论 组织的差异性主要是由扫描工艺与熔池内部复杂的温度场引起的,微观结构的各向异性会造成力学性能的差异,xy方向的强度高于zx方向的,zx方向上的塑性韧性更高。

关 键 词:第一壁  激光选区熔化  数值模拟  微观组织  力学性能

Selective Laser Melting of Blanket First Wall Reduced Scale Component for Fusion Reactor
WANG Zhi-yong,WU Jie-feng,LIU Zhi-hong,MA Jian-guo,ZHAI Hua.Selective Laser Melting of Blanket First Wall Reduced Scale Component for Fusion Reactor[J].Journal of Netshape Forming Engineering,2023,15(6):111-119.
Authors:WANG Zhi-yong  WU Jie-feng  LIU Zhi-hong  MA Jian-guo  ZHAI Hua
Affiliation:Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China;University of Science and Technology of China, Hefei 230026, China;Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China;Anhui Provincial Key Laboratory of Special Welding Technology, Huainan 232063, China;Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China;Anhui Provincial Key Laboratory of Special Welding Technology, Huainan 232063, China;Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, China; Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, HFUT, Hefei 230009, China
Abstract:The work aims to investigate the microstructure and properties of the first wall reduced scale structure formed by selective laser melting. The stress and deformation of the first wall reduced scale structure under different forming postures were subject to numerical simulation with 316L powder by Inspire software. The best forming posture was selected for SLM to control the overall deformation, and the microstructure observation and mechanical properties test of the formed parts were carried out. The experimental results indicated that the residual stress and deformation were the smallest under flat placement compared with those under vertical and side placement, and the maximum residual stress and deformation could reach 29.68 MPa and 0.29 mm, respectively. The main microstructure of the formed parts presented anisotropic coarse cellular crystal in x-y direction and slender columnar crystal in z-x direction. The mechanical test results showed that tensile strength, elongation and impact toughness in x-y direction were up to 672.1 MPa, 48.2% and 100.6 J/cm2, respectively and 646.9 MPa, 64.4%, 136.3 J/cm2 in z-x direction. The difference of microstructure is mainly caused by the scanning process and complex temperature field of molten pool. The anisotropy of microstructure results in different mechanical properties and the strength in x-y direction is higher than that in z-x direction, while the higher plasticity and toughness are exhibited in z-x direction.
Keywords:first wall  selective laser melting  numerical simulation  microstructure  mechanical properties
点击此处可从《精密成形工程》浏览原始摘要信息
点击此处可从《精密成形工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号