摘 要: | 针对糖尿病视网膜病变(DR)图像,提出了一种基于多任务学习的图像多分类分割方法.首先,通过Otsu阈值算法将大部分无病灶信息像素去除;其次,通过滑动窗口切割的方法将图像切分为若干小尺寸的图像,以解决医学图像分辨率过大以及病灶在图像中占比较小的问题;再次,将不存在病灶的子图剔除,以增大含病灶子图的比例;最后,利用UNet++多任务学习属性,并且用转置卷积代替传统上采样,进行多输出多病灶的图像分割.通过在国际公开的IDRID和DDR数据集上进行验证,在IDRi D上取得0.713 1的m AUPR,在DDR上取得0.569 1的m AUPR.
|