首页 | 本学科首页   官方微博 | 高级检索  
     

面向小样本意图识别的分步式阶段性数据增强
作者姓名:李玉茹  张晓滨
作者单位:西安工程大学 计算机科学学院, 西安 710048
基金项目:陕西省自然科学基金(2019JQ-849)
摘    要:文本意图识别任务中常面临训练数据不足的问题,且由于文本数据离散性导致在标签不变的条件下进行数据增强并提高原模型性能具有一定困难,为解决小样本意图识别任务中的上述问题,提出一种分步式数据增强与阶段性训练策略相结合的方法.该方法从全局和局部两个角度将原始数据在全体语句和同类别中的样本对上进行递进式增强,并在模型训练期间根据递进层次的不同划分阶段进行学习,最后在多个意图识别数据集上进行实验以评估其有效性.实验结果表明,该方法可以有效提高小样本环境中意图识别模型的准确率,同时模型的稳定性也得到了提升.

关 键 词:小样本  意图识别  数据增强  分步式  阶段性训练
收稿时间:2022-05-15
修稿时间:2022-06-15
点击此处可从《计算机系统应用》浏览原始摘要信息
点击此处可从《计算机系统应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号