首页 | 本学科首页   官方微博 | 高级检索  
     

潜在语义分析中词汇-文本矩阵奇异值分解的并行实现
引用本文:郭恒明,雷咏梅,李利杰,王雄. 潜在语义分析中词汇-文本矩阵奇异值分解的并行实现[J]. 计算机应用与软件, 2009, 26(2)
作者姓名:郭恒明  雷咏梅  李利杰  王雄
作者单位:上海大学计算机工程与科学学院,上海,200072;宁波城市职业技术学院,浙江,宁波,315100
基金项目:上海高校网格技术E-研究院资助项目 
摘    要:针对潜在语义分析中词汇-文本矩阵奇异值分解的特点,设计并实现了一种基于单边Jacobi的矩阵奇异值分解的并行算法.并行算法采用了一种新的扫描策略和任务划分策略,该策略在一次扫描中能产生n(n-1)/2个不同的列向量对,同时能够对矩阵的列向量按模排序,使奇异值按从大到小的顺序排列.通过在自强3000高性能计算机上的实验表明,并行算法大大缩短了奇异值分解的计算时间,而且随着矩阵规模逐渐变大,加速比趋于稳定.

关 键 词:奇异值分解  单边Jacobi  并行计算  潜在语义分析

PARALLEL IMPLEMENTATION OF SINGULAR VALUE DECOMPOSITION FOR TERM-DOCUMENT MATRIX IN LATENT SEMANTIC ANALYSIS
Guo Hengming,Lei Yongmei,Li Lijie,Wang Xiong. PARALLEL IMPLEMENTATION OF SINGULAR VALUE DECOMPOSITION FOR TERM-DOCUMENT MATRIX IN LATENT SEMANTIC ANALYSIS[J]. Computer Applications and Software, 2009, 26(2)
Authors:Guo Hengming  Lei Yongmei  Li Lijie  Wang Xiong
Affiliation:School of Computer Engineering and Science;Shanghai University;Shanghai 200072;China;Ningbo City's College of Vocational Technology;Ningbo 315100;Zhejiang;China
Abstract:According to singular value decomposition(SVD) character of term-document matrix in latent semantic analysis(LSA),a parallel algorithm of SVD computation based on one-side Jacobi was designed and implemented.The new parallel scanning strategy and task partition strategy were adopted in the parallel algorithm,these strategies can generate n(n-1)/2 different column vector pairs once in a scanning operation and sort the column vectors in matrix on norms to queue the singular values in a sequence from big to sm...
Keywords:SVD One-side Jacobi Parallel computing Latent semantic analysis  
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号